[转帖]大数据架构有哪些?应该如何理解?_Hadoop,ERP及大数据讨论区_Weblogic技术|Tuxedo技术|中间件技术|Oracle论坛|JAVA论坛|Linux/Unix技术|hadoop论坛_联动北方技术论坛  
网站首页 | 关于我们 | 服务中心 | 经验交流 | 公司荣誉 | 成功案例 | 合作伙伴 | 联系我们 |
联动北方-国内领先的云技术服务提供商
»  游客             当前位置:  论坛首页 »  自由讨论区 »  Hadoop,ERP及大数据讨论区 »
总帖数
1
每页帖数
101/1页1
返回列表
0
发起投票  发起投票 发新帖子
查看: 2283 | 回复: 0   主题: [转帖]大数据架构有哪些?应该如何理解?        上一篇   下一篇 
liuliying930406
注册用户
等级:中校
经验:2027
发帖:210
精华:0
注册:2018-10-9
状态:离线
发送短消息息给liuliying930406 加好友    发送短消息息给liuliying930406 发消息
发表于: IP:您无权察看 2018-10-22 15:58:49 | [全部帖] [楼主帖] 楼主


转自公众号头条问答


核心的模块是Cube,Cube是一个更高层的业务模型抽象,在Cube之上可以进行多种操作。大部分BI系统都基于关系型数据库,关系型数据库使用SQL语句进行操作,但是SQL在多维操作和分析的表示能力上相对较弱,所以Cube有自己独有的查询语言MDX,MDX表达式具有更强的多维表现能力,所以以Cube为核心的分析系统基本占据着数据统计分析的半壁江山,大多数的数据库服务厂商直接提供了BI套装软件服务,轻易便可搭建出一套Olap分析系统。

以Hadoop体系为首的大数据分析平台:

 Hadoop体系的生态圈也不断的变大,目前围绕Hadoop体系的大数据架构大概有以下几种:


传统大数据架构

image.png

其定位是为了解决传统BI的问题,简单说,数据分析的业务没有发生任何变化,依然保留了ETL的动作,将数据经过ETL动作进入数据存储。

适用场景:

数据分析需求依旧以BI场景为主,但是因为数据量、性能等问题无法满足日常使用。


流式架构

image.png

在传统大数据架构的基础上,流式架构非常激进,直接拔掉了批处理,数据全程以流的形式处理,所以在数据接入端没有了ETL,转而替换为数据通道。经过流处理加工后的数据,以消息的形式直接推送给了消费者。虽然有一个存储部分,但是该存储更多的以窗口的形式进行存储,所以该存储并非发生在数据湖,而是在外围系统。

适用场景:

预警,监控,对数据有有效期要求的情况。


Lambda架构

image.png

Lambda架构算是大数据系统里面举足轻重的架构,大多数架构基本都是Lambda架构或者基于其变种的架构。Lambda的数据通道分为两条分支:实时流和离线。实时流依照流式架构,保障了其实时性,而离线则以批处理方式为主,保障了最终一致性。流式通道处理为保障实效性更多的以增量计算为主辅助参考,而批处理层则对数据进行全量运算,保障其最终的一致性,因此Lambda最外层有一个实时层和离线层合并的动作,此动作是Lambda里非常重要的一个动作,大概的合并思路如下:

image.png

适用场景:

同时存在实时和离线需求的情况。


Kappa架构

image.png

Kappa架构在Lambda 的基础上进行了优化,将实时和流部分进行了合并,将数据通道以消息队列进行替代。因此对于Kappa架构来说,依旧以流处理为主,但是数据却在数据湖层面进行了存储,当需要进行离线分析或者再次计算的时候,则将数据湖的数据再次经过消息队列重播一次则可。

适用场景:

和Lambda类似,改架构是针对Lambda的优化。


Unifield架构

image.png

Unifield架构更激进,将机器学习和数据处理揉为一体,从核心上来说,Unifield依旧以Lambda为主,不过对其进行了改造,在流处理层新增了机器学习层。可以看到数据在经过数据通道进入数据湖后,新增了模型训练部分,并且将其在流式层进行使用。同时流式层不单使用模型,也包含着对模型的持续训练。

适用场景:

有着大量数据需要分析,同时对机器学习方便又有着非常大的需求或者有规划。



该贴被liuliying930406编辑于2018-10-22 16:03:53



赞(0)    操作        顶端 
总帖数
1
每页帖数
101/1页1
返回列表
发新帖子
请输入验证码: 点击刷新验证码
您需要登录后才可以回帖 登录 | 注册
技术讨论