[转帖]非常全面!200种机器学习教程汇总!_AI.人工智能讨论区_Weblogic技术|Tuxedo技术|中间件技术|Oracle论坛|JAVA论坛|Linux/Unix技术|hadoop论坛_联动北方技术论坛  
网站首页 | 关于我们 | 服务中心 | 经验交流 | 公司荣誉 | 成功案例 | 合作伙伴 | 联系我们 |
联动北方-国内领先的云技术服务提供商
»  游客             当前位置:  论坛首页 »  自由讨论区 »  AI.人工智能讨论区 »
总帖数
1
每页帖数
101/1页1
返回列表
0
发起投票  发起投票 发新帖子
查看: 2764 | 回复: 0   主题: [转帖]非常全面!200种机器学习教程汇总!        下一篇 
huang.wang
注册用户
等级:中将
经验:17623
发帖:407
精华:1
注册:1970-1-1
状态:离线
发送短消息息给huang.wang 加好友    发送短消息息给huang.wang 发消息
发表于: IP:您无权察看 2018-10-4 0:53:03 | [全部帖] [楼主帖] 楼主


本文转自公众号 云栖社区


摘要:不吹不黑,绝对史上最全的机器学习学习材料!本文包含了迄今为止大家公认的最佳教程内容。它绝不是网上每个ML相关教程的详尽列表,而是经过精挑细选而成的,毕竟网上的东西并不全是好的。作者汇总的目标是为了补充我即将出版的新书,为它寻找在机器学习和NLP领域中找到的最佳教程。

通过这些最佳教程的汇总,我可以快速的找到我想要得到的教程。从而避免了阅读更广泛覆盖范围的书籍章节和苦恼的研究论文,你也许知道,当你的数学功底不是很好的时候这些论文你通常是拿不下的。为什么不买书呢?没有哪一个作者是一个全能先生。当你尝试学习特定的主题或想要获得不同的观点时,教程可能是非常有帮助的。

image.png

我将这篇文章分为四个部分:机器学习,NLP,Python和数学。我在每个部分都包含了一些主题,但由于机器学习是一个非常复杂的学科,我不可能包含所有可能的主题。

如果有很好的教程你知道我错过了,请告诉我!我将继续完善这个学习教程。我在挑选这些链接的时候,都试图保证每个链接应该具有与其他链接不同的材料或以不同的方式呈现信息(例如,代码与幻灯片)或从不同的角度。


机器学习


从机器学习入手

https://machinelearningmastery.com/start-here/


机器学习很有趣!

https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471


机器学习规则:ML工程的最佳实践

http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf


机器学习速成课程:第一部分,第二部分,第三部分(伯克利机器学习)

https://ml.berkeley.edu/blog/2016/11/06/tutorial-1/

https://ml.berkeley.edu/blog/2016/12/24/tutorial-2/

https://ml.berkeley.edu/blog/2017/02/04/tutorial-3/


机器学习理论及其应用简介:用一个小例子进行视觉教程

https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer


机器学习的简单指南

https://monkeylearn.com/blog/a-gentle-guide-to-machine-learning/


我应该使用哪种机器学习算法?

https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/


机器学习入门

https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/machine-learning-primer-108796.pdf


初学者机器学习教程

https://www.kaggle.com/kanncaa1/machine-learning-tutorial-for-beginners


激活函数和Dropout函数


Sigmoid神经元

http://neuralnetworksanddeeplearning.com/chap1.html


激活函数在神经网络中的作用是什么?

https://www.quora.com/What-is-the-role-of-the-activation-function-in-a-neural-network


神经网络中常见的激活函数的优缺点比较列表

https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons


激活函数及其类型对比

https://medium.com/towards-data-science/activation-functions-and-its-types-which-is-better-a9a5310cc8f


理解对数损失

http://www.exegetic.biz/blog/2015/12/making-sense-logarithmic-loss/


损失函数(斯坦福CS231n)

http://cs231n.github.io/neural-networks-2/


L1与L2损失函数

http://rishy.github.io/ml/2015/07/28/l1-vs-l2-loss/


交叉熵成本函数

http://neuralnetworksanddeeplearning.com/chap3.html


偏差(bias)


偏差在神经网络中的作用

https://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks/2499936


神经网络中的偏差节点

http://makeyourownneuralnetwork.blogspot.com/2016/06/bias-nodes-in-neural-networks.html


什么是人工神经网络的偏差?

https://www.quora.com/What-is-bias-in-artificial-neural-network


感知器


感知器

http://neuralnetworksanddeeplearning.com/chap1.html


感知

http://natureofcode.com/book/chapter-10-neural-networks/


单层神经网络(感知器)

http://computing.dcu.ie/~humphrys/Notes/Neural/single.neural.html


从Perceptrons到Deep Networks

https://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks


回归


线性回归分析介绍

http://people.duke.edu/~rnau/regintro.htm


线性回归

http://ufldl.stanford.edu/tutorial/supervised/LinearRegression/


线性回归

http://ml-cheatsheet.readthedocs.io/en/latest/linear_regression.html


Logistic回归

http://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html


机器学习的简单线性回归教程

http://machinelearningmastery.com/simple-linear-regression-tutorial-for-machine-learning/


机器学习的Logistic回归教程

http://machinelearningmastery.com/logistic-regression-tutorial-for-machine-learning/


Softmax回归

http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/


梯度下降


在梯度下降中学习

http://neuralnetworksanddeeplearning.com/chap1.html


梯度下降

http://iamtrask.github.io/2015/07/27/python-network-part2/


如何理解梯度下降算法

http://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html


梯度下降优化算法概述

http://sebastianruder.com/optimizing-gradient-descent/


优化:随机梯度下降(斯坦福CS231n)

http://cs231n.github.io/optimization-1/


生成学习(GenerativeLearning)


生成学习算法(斯坦福CS229)

http://cs229.stanford.edu/notes/cs229-notes2.pdf


朴素贝叶斯分类器实用解释

https://monkeylearn.com/blog/practical-explanation-naive-bayes-classifier/

https://monkeylearn.com/blog/practical-explanation-naive-bayes-classifier/


支持向量机


支持向量机(SVM)简介

https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/


支持向量机(斯坦福CS229)

http://cs229.stanford.edu/notes/cs229-notes3.pdf


线性分类:支持向量机,Softmax

http://cs231n.github.io/linear-classify/


反向传播


你应该了解的backprop

(medium.com/@karpathy)


你能给出神经网络反向传播算法的直观解释吗?

https://github.com/rasbt/python-machine-learning-book/blob/master/faq/visual-backpropagation.md


反向传播算法的工作原理

http://neuralnetworksanddeeplearning.com/chap2.html


通过时间反向传播和消失的渐变

http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/


时间反向传播的简单介绍

http://machinelearningmastery.com/gentle-introduction-backpropagation-time/


反向传播,直觉(斯坦福CS231n)

http://cs231n.github.io/optimization-2/


深度学习


YN²深度学习指南

http://cs231n.github.io/optimization-2/


深度学习论文阅读路线图

https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap


Nutshell中的深度学习

http://nikhilbuduma.com/2014/12/29/deep-learning-in-a-nutshell/


深度学习教程

http://ai.stanford.edu/~quocle/tutorial1.pdf


什么是深度学习?

http://machinelearningmastery.com/what-is-deep-learning/


人工智能,机器学习和深度学习之间有什么区别?

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/


深度学习–简单介绍 

https://gluon.mxnet.io/


最优化和降维


数据降维减少的七种技术

https://www.knime.org/blog/seven-techniques-for-data-dimensionality-reduction


主成分分析(斯坦福CS229)

http://cs229.stanford.edu/notes/cs229-notes10.pdf


Dropout:一种改善神经网络的简单方法http://videolectures.net/site/normal_dl/tag=741100/nips2012_hinton_networks_01.pdf


如何训练你的深度神经网络?

http://rishy.github.io/ml/2017/01/05/how-to-train-your-dnn/


长短期记忆(LSTM)


长短期记忆网络的通俗介绍

http://machinelearningmastery.com/gentle-introduction-long-short-term-memory-networks-experts/


了解LSTM 神经网络Networks

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


探索LSTM

http://blog.echen.me/2017/05/30/exploring-lstms/


任何人都可以学习用Python编写LSTM-RNN

http://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/

http://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/


卷积神经网络(CNN)


卷积网络介绍

http://neuralnetworksanddeeplearning.com/chap6.html


深度学习和卷积神经网络

https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721


Conv Nets:模块化视角

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/


了解卷积

http://colah.github.io/posts/2014-07-Understanding-Convolutions/


递归神经网络(RNN)


递归神经网络教程

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/


注意和增强的递归神经网络

http://distill.pub/2016/augmented-rnns/


递归神经网络的不合理有效性

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


深入了解递归神经网络

http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/

http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/


强化学习


强化学习初学者入门及其实施指南

https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-learning-implementation/


强化学习教程

https://web.mst.edu/~gosavia/tutorial.pdf


学习强化学习

http://www.wildml.com/2016/10/learning-reinforcement-learning/


深度强化学习:来自像素的乒乓球

http://karpathy.github.io/2016/05/31/rl/


生成对抗网络(GAN)


对抗机器学习简介

https://aaai18adversarial.github.io/slides/AML.pptx


什么是生成性对抗网络?

https://blogs.nvidia.com/blog/2017/05/17/generative-adversarial-network/


滥用生成对抗网络制作8位像素艺术

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7


Generative Adversarial Networks简介(TensorFlow中的代码)

http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/


初学者的生成对抗网络

https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners


多任务学习


深度神经网络中多任务学习概述

http://sebastianruder.com/multi-task/index.html


NLP


自然语言处理很有趣!

https://medium.com/@ageitgey/natural-language-processing-is-fun-9a0bff37854e


自然语言处理神经网络模型入门

http://u.cs.biu.ac.il/~yogo/nnlp.pdf


自然语言处理权威指南

https://monkeylearn.com/blog/the-definitive-guide-to-natural-language-processing/


自然语言处理简介

https://blog.algorithmia.com/introduction-natural-language-processing-nlp/


自然语言处理教程

http://www.vikparuchuri.com/blog/natural-language-processing-tutorial/


自然语言处理(NLP)来自Scratch

https://arxiv.org/pdf/1103.0398.pdf


深度学习和NLP


深度学习适用于NLP

https://arxiv.org/pdf/1703.03091.pdf


NLP的深度学习(没有魔法)

https://nlp.stanford.edu/courses/NAACL2013/NAACL2013-Socher-Manning-DeepLearning.pdf


了解NLP的卷积神经网络

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/


深度学习、NLP、表示

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/


最先进的NLP模型的新深度学习公式:嵌入、编码、参与、预测

https://explosion.ai/blog/deep-learning-formula-nlp


使用Torch深度神经网络进行自然语言处理

https://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/


使用Pytorch进行深度学习NLP

http://pytorch.org/tutorials/beginner/deep_learning_nlp_tutorial.html


词向量


使用词袋模型解决电影评论分类

https://www.kaggle.com/c/word2vec-nlp-tutorial


词嵌入介绍第一部分,第二部分,第三部分

http://sebastianruder.com/word-embeddings-1/index.html

http://sebastianruder.com/word-embeddings-softmax/index.html

http://sebastianruder.com/secret-word2vec/index.html


词向量的惊人力量

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/


word2vec参数学习解释

https://arxiv.org/pdf/1411.2738.pdf


Word2Vec教程- Skip-Gram模型,负抽样

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/


编码器-解码器


深度学习和NLP中的注意力机制和记忆力模型

http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/


序列模型

tensorflow.org


使用神经网络进行序列学习

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf


机器学习很有趣第五部分:深度学习的语言翻译和序列的魔力

https://medium.com/@ageitgey/machine-learning-is-fun-part-5-language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa


如何使用编码器-解码器LSTM来回显随机整数序列

http://machinelearningmastery.com/how-to-use-an-encoder-decoder-lstm-to-echo-sequences-of-random-integers/


tf-seq2seq

https://google.github.io/seq2seq/


Python


机器学习速成课程

https://developers.google.com/machine-learning/crash-course/


令人敬畏的机器学习

https://github.com/josephmisiti/awesome-machine-learning


使用Python掌握机器学习的7个步骤

http://www.kdnuggets.com/2015/11/seven-steps-machine-learning-python.html


一个示例机器学习笔记

http://nbviewer.jupyter.org/github/rhiever/Data-Analysis-and-Machine-Learning-Projects/blob/master/example-data-science-notebook/Example%20Machine%20Learning%20Notebook.ipynb


使用Python进行机器学习

https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_quick_guide.htm


实战案例


如何在Python中从头开始实现感知器算法

http://machinelearningmastery.com/implement-perceptron-algorithm-scratch-python/


在Python中使用Scratch实现神经网络

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/


使用11行代码在Python中实现神经网络

http://iamtrask.github.io/2015/07/12/basic-python-network/


使用Python实现你自己的k-Nearest Neighbor算法

http://www.kdnuggets.com/2016/01/implementing-your-own-knn-using-python.html


来自Scatch的ML

https://github.com/eriklindernoren/ML-From-Scratch


Python机器学习(第2版)代码库

https://github.com/rasbt/python-machine-learning-book-2nd-edition


Scipy和numpy


Scipy讲义

http://www.scipy-lectures.org/


Python Numpy教程

http://cs231n.github.io/python-numpy-tutorial/


Numpy和Scipy简介

https://engineering.ucsb.edu/~shell/che210d/numpy.pdf


Python中的科学家速成课程

http://nbviewer.jupyter.org/gist/rpmuller/5920182

http://nbviewer.jupyter.org/gist/rpmuller/5920182


scikit学习


PyCon scikit-learn教程索引

http://nbviewer.jupyter.org/github/jakevdp/sklearn_pycon2015/blob/master/notebooks/Index.ipynb


scikit-learn分类算法

https://github.com/mmmayo13/scikit-learn-classifiers/blob/master/sklearn-classifiers-tutorial.ipynb


scikit-learn教程

http://scikit-learn.org/stable/tutorial/index.html


简短的scikit-learn教程

https://github.com/mmmayo13/scikit-learn-beginners-tutorials


Tensorflow


Tensorflow教程

https://www.tensorflow.org/tutorials/


TensorFlow简介 - CPU与GPU

https://medium.com/@erikhallstrm/hello-world-tensorflow-649b15aed18c


TensorFlow

https://blog.metaflow.fr/tensorflow-a-primer-4b3fa0978be3


Tensorflow中的RNN

http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/


在TensorFlow中实现CNN进行文本分类

http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/


如何使用TensorFlow运行文本摘要

http://pavel.surmenok.com/2016/10/15/how-to-run-text-summarization-with-tensorflow/


PyTorch


PyTorch教程

http://pytorch.org/tutorials/


PyTorch的简单介绍

http://blog.gaurav.im/2017/04/24/a-gentle-intro-to-pytorch/


教程:PyTorch中的深度学习

https://iamtrask.github.io/2017/01/15/pytorch-tutorial/


PyTorch示例

https://github.com/jcjohnson/pytorch-examples


PyTorch教程

https://github.com/MorvanZhou/PyTorch-Tutorial


深度学习研究人员的PyTorch教程

https://github.com/yunjey/pytorch-tutorial


数学


机器学习数学

https://people.ucsc.edu/~praman1/static/pub/math-for-ml.pdf


机器学习数学

http://www.umiacs.umd.edu/~hal/courses/2013S_ML/math4ml.pdf


线性代数


线性代数直观指南

https://betterexplained.com/articles/linear-algebra-guide/


程序员对矩阵乘法的直觉

https://betterexplained.com/articles/matrix-multiplication/


了解Cross产品

https://betterexplained.com/articles/cross-product/


了解Dot产品

https://betterexplained.com/articles/vector-calculus-understanding-the-dot-product/


用于机器学习的线性代数(布法罗大学CSE574)http://www.cedar.buffalo.edu/~srihari/CSE574/Chap1/LinearAlgebra.pdf


用于深度学习的线性代数备忘单

https://medium.com/towards-data-science/linear-algebra-cheat-sheet-for-deep-learning-cd67aba4526c


线性代数评论与参考

http://cs229.stanford.edu/section/cs229-linalg.pdf


概率论


用比率理解贝叶斯定理

https://betterexplained.com/articles/understanding-bayes-theorem-with-ratios/


概率论入门

http://cs229.stanford.edu/section/cs229-prob.pdf


机器学习的概率论教程

https://see.stanford.edu/materials/aimlcs229/cs229-prob.pdf


概率论(布法罗大学CSE574)

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap1/Probability-Theory.pdf


机器学习的概率论(多伦多大学CSC411)

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/tutorial1.pdf


微积分


如何理解导数:商数规则,指数和对数

https://betterexplained.com/articles/how-to-understand-derivatives-the-quotient-rule-exponents-and-logarithms/


如何理解导数:产品,动力和链条规则

(betterexplained.com)

https://betterexplained.com/articles/derivatives-product-power-chain/


矢量微积分:了解渐变

https://betterexplained.com/articles/vector-calculus-understanding-the-gradient/


微分学(斯坦福CS224n)

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-review-differential-calculus.pdf


微积分概述

http://ml-cheatsheet.readthedocs.io/en/latest/calculus.html




我超级酷,但是如果你回复我的话我可以不酷那么一小会儿。


——来自logo.png


赞(0)    操作        顶端 
总帖数
1
每页帖数
101/1页1
返回列表
发新帖子
请输入验证码: 点击刷新验证码
您需要登录后才可以回帖 登录 | 注册
技术讨论