[转帖]超级立方体小记_AI.人工智能讨论区_Weblogic技术|Tuxedo技术|中间件技术|Oracle论坛|JAVA论坛|Linux/Unix技术|hadoop论坛_联动北方技术论坛  
网站首页 | 关于我们 | 服务中心 | 经验交流 | 公司荣誉 | 成功案例 | 合作伙伴 | 联系我们 |
联动北方-国内领先的云技术服务提供商
»  游客             当前位置:  论坛首页 »  自由讨论区 »  AI.人工智能讨论区 »
总帖数
1
每页帖数
101/1页1
返回列表
0
发起投票  发起投票 发新帖子
查看: 2639 | 回复: 0   主题: [转帖]超级立方体小记        下一篇 
huang.wang
注册用户
等级:中将
经验:17623
发帖:407
精华:1
注册:1970-1-1
状态:离线
发送短消息息给huang.wang 加好友    发送短消息息给huang.wang 发消息
发表于: IP:您无权察看 2018-9-3 11:35:46 | [全部帖] [楼主帖] 楼主


本文转自 CSDN论坛一刀不二博客


在多指令流多数据流MIMD里面有用到基于超立方体互联的网络结构,

用《图论导引》里面简单的描述,就是处理器能通信,当且仅当他们的邻接(k元祖代表了处理器的地址)

一个 k 维立方体(或者超立方体Qk)是一种简单图,每个顶点{0,1}标记的k元祖来表示。

相邻的顶点之间的 k 元祖只有一个位置上数字不同,Qk 的生成立方体 Qj 和 Qj 本身同构。

这是Q3的表示:

image.png

仔细观察会发现,Qk图里面的每条边链接的两个顶点的k元祖里的1的个数一端是奇数,另一端为偶数,

因此包含奇数个数 1 的点可以当做一个集合,偶数的也可以,所以 Qk 为二分图。

显而易见 Qk 有 2^k个顶点,每个顶点度为 k ,那么 Qk 里面会有 k* (2^k) / 2 条边。


Qk 里面有多少个 Qj 呢?

那么到底什么是( 1,1,0,0,1,0,.............,1 ) 呢?

想想也就是 k 维世界的坐标,那么隔绝掉一维或者几个维度,剩下的就是那个世界里的空间变化情况。

可以这样想,k 维度空间的世界里面固定 j 维,假设在这样 j 维的世界里面只生产拥有 j 个维度的事物,

也就是元祖里面还剩下 k - j 个元素没有被固定,每个 j 维世界都有 2^( k - j ) 个事物( Qj ),

那么 Qk 里面就一共有 C( k,j ) * 2^( k - j ) 个 Qj。

(或者反过来说,如果想要得到一个Qj,只需要固定 k - j 个标识,而将剩下的 j 位,取遍 2^j,

得到2^j个顶点,和它们间相连的边,就是一个Qj)

这是一个Q4图,Q4可以看做由一个Q3沿着某个维度移动一定距离,

然后将点对链接在一起得到的。里面有8 == C(4,3) * 2^1 个Q3(绿)。

image.png

这也是Q4的另一种样子,如果你能想象出其由8个立方体叠在一起的话........

人的大脑里面并没有“厚度”的概念,所以只能通过数学的方式来理解高维空间的物体。

image.png


应用:

E-立方体路由算法

比如给定立方体中的起始点 s 和终止点 d,问从 s 到 d 的最短路径

image.png

步骤:

1.计算方向位,r[i] = s[i-1] xor d[i-1],其中i = 1,,,n

令 i = 1, v = s

2.若r[i] == 1,则从当前节点寻找下一节点 v xor 2^(i-1)

若r[i] == 0,跳过

3.i = i + 1,若 i <= n, 转2,否则退出

假设这里 s = 0110,d = 1101

step1.计算方位,r = s xor d = 1011

step2.因为 r[1] == 1,v = 0110 xor 0001 = 0111, i = 1

step3.因为 r[2] == 1,v = 0111 xor 0010 = 0101, i = 2

step4.因为 r[3] == 0,跳过 v = 0101, i = 3

step5.因为 r[4] == 1,v = 0101 xor 1000 = 1101 = d, i = 4, end

路径为 0110 -> 0111 -> 0101 -> 1101



我超级酷,但是如果你回复我的话我可以不酷那么一小会儿。


——来自logo.png


赞(0)    操作        顶端 
总帖数
1
每页帖数
101/1页1
返回列表
发新帖子
请输入验证码: 点击刷新验证码
您需要登录后才可以回帖 登录 | 注册
技术讨论