5.《孙子问题(中国剩余定理)》
在我国古代算书《孙子算经》中有这样一个问题:
“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”意思是,“一个数除以3余2,除以5余3,除以7余2.求适合这个条件的最小数。”
这个问题称为“孙子问题”.关于孙子问题的一般解法,国际上称为“中国剩余定理”.
我国古代学者早就研究过这个问题。例如我国明朝数学家程大位在他著的《算法统宗》(1593年)中就用四句很通俗的口诀暗示了此题的解法:
三人同行七十稀,五树梅花甘一枝,七子团圆正半月,除百零五便得知。
"正半月"暗指15。"除百零五"的原意是,当所得的数比105大时,就105、105地往下减,使之小于105;这相当于用105去除,求出余数。
这四句口诀暗示的意思是:当除数分别是3、5、7时,用70乘以用3除的余数,用21乘以用5除的余数,用15乘以用7除的余数,然后把这三个乘积相加。加得的结果如果比105大,就除以105,所得的余数就是满足题目要求的最小正整数解。
根据剩余定理,我把此种解法推广到有n(n为自然数)个除数对应n个余数,求最小被除数的情况。输入n个除数(除数不能互相整除)和对应的余数,计算机将输出最小被除数。
C++实现功能函数:
/*
函数名:ResidueTheorem
函数功能:运用剩余定理,解决推广了的孙子问题。通过给定n个除数(除数不能互相整除)和对应的余数,返回最小被除数
输入值:unsigned int devisor[],存储了n个除数的数组
unsigned int remainder[],存储了n个余数的数组
int length,数组的长度
返回值:unsigned int, 最小被除数
*/
unsigned int ResidueTheorem(const unsigned int devisor[], const unsigned int remainder[], int length)
{
unsigned int product = 1; //所有除数之乘积
for (int i=0; i<length; i++)//计算所有除数之乘积
{
product *= devisor[i];
}
//公倍数数组,表示除该元素(除数)之外其他除数的公倍数
unsigned int *commonMultiple = new unsigned int(length);
for (int i=0; i<length; i++)//计算除该元素(除数)之外其他除数的公倍数
{
commonMultiple[i] = product / devisor[i];
}
unsigned int dividend = 0; //被除数,就是函数要返回的值
for (int i=0; i<length; i++)//计算被除数,但此时得到的不是最小被除数
{
unsigned int tempMul = commonMultiple[i];
//按照剩余理论计算合适的公倍数,使得tempMul % devisor[i] == 1
while (tempMul % devisor[i] != 1)
{
tempMul += commonMultiple[i];
}
dividend += tempMul * remainder[i]; //用本除数得到的余数乘以其他除数的公倍数
}
delete []commonMultiple;
return (dividend % product); //返回最小被除数
}
6. 凯撒密码
凯撒密码(caeser)是罗马扩张时期朱利斯o凯撒(Julius Caesar)创造的,用于加密通过信使传递的作战命令。
它将字母表中的字母移动一定位置而实现加密。注意26个字母循环使用,z的后面可以堪称是a。
例如,当密匙为k = 3,即向后移动3位时,若明文为”How are you!”,则密文为”Krz duh btx!”。
凯撒密码的加密算法极其简单。其加密过程如下:
在这里,我们做此约定:明文记为m,密文记为c,加密变换记为E(key1,m)(其中key1为密钥),
解密变换记为D(key2,m)(key2为解密密钥)(在这里key1=key2,不妨记为key)。
凯撒密码的加密过程可记为如下一个变换:c≡m+key (mod n) (其中n为基本字符个数)
同样,解密过程可表示为:m≡c+key (mod n) (其中n为基本字符个数)
C++实现功能函数:
/*
函数功能:使用凯撒密码原理,对明文进行加密,返回密文 函数名:Encrypt
输入值:const char proclaimedInWriting[],存储了明文的字符串
char cryptograph[],用来存储密文的字符串
int keyey,加密密匙,正数表示后移,负数表示前移
返回值:无返回值,但是要将新的密文字符串返回
*/
void Encrypt(const char proclaimedInWriting[], char cryptograph[], int key)
{
const int NUM = 26; //字母个数
int len = strlen(proclaimedInWriting);
for (int i=0; i<len; i++)
{
if (proclaimedInWriting[i] >= 'a' && proclaimedInWriting[i] <= 'z')
{//明码是大写字母,则密码也为大写字母
cryptograph[i] = (proclaimedInWriting[i] - 'a' + key) % NUM + 'a';
}
else if (proclaimedInWriting[i] >= 'A' && proclaimedInWriting[i] <= 'Z')
{//明码是小写字母,则密码也为小写字母
cryptograph[i] = (proclaimedInWriting[i] - 'A' + key) % NUM + 'A';
}
else
{//明码不是字母,则密码与明码相同
cryptograph[i] = proclaimedInWriting[i];
}
}
cryptograph[len] = '\0';
}
/*
函数功能:使用凯撒密码原理,对密文进行解密,返回明文 函数名:Decode
输入值:char proclaimedInWriting[],用来存储明文的字符串
const char cryptograph[],存储了密文的字符串
int keyey,解密密匙,正数表示前移,负数表示后移(与加密相反)
返回值:无返回值,但是要将新的明文字符串返回
*/
void Decode(const char cryptograph[], char proclaimedInWriting[], int key)
{
const int NUM = 26; //字母个数
int len = strlen(cryptograph);
for (int i=0; i<len; i++)
{
if (cryptograph[i] >= 'a' && cryptograph[i] <= 'z')
{//密码是大写字母,则明码也为大写字母,为防止出现负数,转换时要加个NUM
proclaimedInWriting[i] = (cryptograph[i] - 'a' - key + NUM) % NUM + 'a';
}
else if (cryptograph[i] >= 'A' && cryptograph[i] <= 'Z')
{//密码是小写字母,则明码也为小写字母
proclaimedInWriting[i] = (cryptograph[i] - 'A' - key + NUM) % NUM + 'A';
}
else
{//密码不是字母,则明码与明密相同
proclaimedInWriting[i] = cryptograph[i];
}
}
proclaimedInWriting[len] = '\0';
}
模运算及其简单应用就先讲到这了,其实模运算在数学及计算机领域的应用非常广泛,我这这里搜集整理了一些最最基本的情形,希望能够起到一个抛砖引玉的作用,让更多的人关注模运算,并及其应用到更广阔的领域中。