[转帖]模运算及其应用一:基本理论_Android, Python及开发编程讨论区_Weblogic技术|Tuxedo技术|中间件技术|Oracle论坛|JAVA论坛|Linux/Unix技术|hadoop论坛_联动北方技术论坛  
网站首页 | 关于我们 | 服务中心 | 经验交流 | 公司荣誉 | 成功案例 | 合作伙伴 | 联系我们 |
联动北方-国内领先的云技术服务提供商
»  游客             当前位置:  论坛首页 »  自由讨论区 »  Android, Python及开发编程讨论区 »
总帖数
1
每页帖数
101/1页1
返回列表
0
发起投票  发起投票 发新帖子
查看: 3479 | 回复: 0   主题: [转帖]模运算及其应用一:基本理论        下一篇 
mengyuanye
注册用户
等级:少校
经验:1413
发帖:108
精华:7
注册:2012-11-14
状态:离线
发送短消息息给mengyuanye 加好友    发送短消息息给mengyuanye 发消息
发表于: IP:您无权察看 2012-11-22 13:57:58 | [全部帖] [楼主帖] 楼主

模运算在数论和程序设计中都有着广泛的应用,从奇偶数的判别到素数的判别,从模幂运算到最大公约数的求法,从孙子问题到凯撒密码问题,无不充斥着模运算的身影。虽然很多数论教材上对模运算都有一定的介绍,但多数都是以纯理论为主,对于模运算在程序设计中的应用涉及不多。本文以c++语言为载体,对基本的模运算应用进行了分析和程序设计,以理论和实际相结合的方法向大家介绍模运算的基本应用。。

一 基本理论:

基本概念:

给定一个正整数p,任意一个整数n,一定存在等式  n = kp + r ;
其中k、r是整数,且 0 ≤ r < p,称呼k为n除以p的商,r为n除以p的余数。 
对于正整数p和整数a,b,定义如下运算:  
取模运算:a % p(或a mod p),表示a除以p的余数。  

模p加法:(a + b) % p ,其结果是a+b算术和除以p的余数,也就是说,(a+b) = kp +r,则(a + b) % p = r。  

模p减法:(a-b) % p ,其结果是a-b算术差除以p的余数。  

模p乘法:(a * b) % p,其结果是 a * b算术乘法除以p的余数。  
说明:

1. 同余式:正整数a,b对p取模,它们的余数相同,记做 a ≡ b % p或者a ≡ b (mod p)。

2. n % p得到结果的正负由被除数n决定,与p无关。例如:7%4 = 3, -7%4 = -3, 7%-4 = 3, -7%-4 = -3。

<!--[if !supportLineBreakNewLine]-->
<!--[endif]-->


基本性质:

(1)若p (a-b),则a≡b (% p)。例如 11 ≡ 4 (% 7), 18 ≡ 4(% 7)

(2)(a % p)=(b % p)意味a≡b (% p)

(3)对称性:a≡b (% p)等价于b≡a (% p)

(4)传递性:若a≡b (% p)且b≡c (% p) ,则a≡c (% p)

运算规则:

模运算与基本四则运算有些相似,但是除法例外。其规则如下:

 (a + b) % p = (a % p + b % p) % p            (1)
(a - b) % p = (a % p - b % p) % p             (2)
(a * b) % p = (a % p * b % p) % p            (3)
ab % p = ((a % p)b) % p                        (4)


结合率: ((a+b) % p + c) % p = (a + (b+c) % p) % p  (5)

((a*b) % p * c)% p = (a * (b*c) % p) % p   (6)


交换率: (a + b) % p = (b+a) % p                 (7)

(a * b) % p = (b * a) % p                 (8)


分配率: ((a +b)% p * c) % p = ((a * c) % p + (b * c) % p) % p  (9)

重要定理:若a≡b (% p),则对于任意的c,都有(a + c) ≡ (b + c) (%p);(10)

若a≡b (% p),则对于任意的c,都有(a * c) ≡ (b * c) (%p);(11)

若a≡b (% p),c≡d (% p),则 (a + c) ≡ (b + d) (%p),(a - c) ≡ (b - d) (%p),

(a * c) ≡ (b * d) (%p),(a / c) ≡ (b / d) (%p); (12)


若a≡b (% p),则对于任意的c,都有ac≡ bc(%p);     (13)




赞(0)    操作        顶端 
总帖数
1
每页帖数
101/1页1
返回列表
发新帖子
请输入验证码: 点击刷新验证码
您需要登录后才可以回帖 登录 | 注册
技术讨论