APPENDIX 1

Memoir on the Conditions for Solvability
of Equations by Radicals
by Evariste Galois

Translated by Harold M. Edwards

PRINCIPLES

I shall begin by establishing some definitions and a sequence of lemmas,
all of which are known.

Definitions. An equation is said to be reducible if it admits rational divisors;
otherwise it is irreducible.

It is necessary to explain what is meant by the word rational, because it
will appear frequently.

When the equation has coefficients that are all numeric and rational, this
means simply that the equation can be decomposed into factors which have
coefficients that are numeric and rational.

But when the coeflicients of an equation are not all numeric and rational,
one must mean by a rational divisor a divisor whose coefficients can be
cxpressed as rational functions of the coefficients of the proposed equation,
and, morc generally, by a rational quantity a quantity that can be expressed
as a rational function of the coefficients of the proposed equation.

More than this: one can agree to regard as rational all rational functions
of a certain number of dctermined quantities, supposed to be known a priori.
For example, one can choose a particular root of a whole number and regard
as rational every rational function of this radical.

When we agree to regard certain quantities as known in this manner, we
shall say that we adjoin them to the equation to be resolved. We shall say
that these quantities are adjoined to the equation.

With these conventions, we shall call rational any quantity which can be
cxpressed as a rational function of the coefficients of the equation and of a
certain number of adjoined quantities arbitrarily agreed upon.
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When we make use of auxiliary equations, they will be rational if their
coefficients are rational in our sense.

One sees, moreover, that the properties and the difficulties of an equation
can be altogether different, depending on what quantities are adjoined to it.
For example, the adjunction of a quantity can render an irreducible equation
reducible.

Thus, when one adjoins to thc equation

x" — 1

ST 0, where n is prime,
a root of one of Mr. Gauss’s auxiliary equations, this equation decomposes
into factors, and consequently becomes reducible.

Substitutions are the passage from one permutation to another.

The initial permutation one uses to describe substitutions is entirely
arbitrary when one is dealing with functions, because there is no reason, in a
function of several letters, for a letter to occupy one position rather than
another.

Nonetheless, since one can hardly comprehend the idea of a substitution
without that of a permutation, we shall frequently speak of permutations,
and we shall consider substitutions only as the passage from one permutation
to another.

When we want to group substitutions we shall make them all proceed
from the same permutation.

As it is always a question of problems in which the initial distribution of
the letters is immaterial, in the groups which we consider one should have
the same substitutions no matter which permutation one starts from. Thus
if the substitutions § and Tare in such a group, one is certain of having the
substitution ST

These are the definitions that we thought we should recall.

LeMMAa L. An irreducible equation cannot have a root in common with a
rational equation without dividing it.

Because the greatest common divisor of the given irreducible equation
and the other equation will also be rational; therefore, etc.

LemMmA II. Given any equation with distinct roots a, b, ¢, ..., one can always
form a function ¥V of the roots such that no two of the values one obtains
by permuting the roots in this function are equal.

For example, one can take
V=Aa+ Bb + Cc + ...,

A, B, C, ... being suitably chosen whole numbers.
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L emma ITI. When the function Vis chosen as indicated above, it will have the
property that all the roots of the given equation can be expressed as rational
functions of V.

In fact,* let

V=¢(a b, cd,...),
or
V—a b, cd,..)=0.

Let us multiply together all the similar equations which one obtains by
permuting in these all the letters, leaving just the first one fixed; this will
give the following expression:

V—ab,c.d . )V~ dachd. )V —dabdfe.. )...,

which is symmetric in b, ¢, d, etc., . . ., and which can consequently be written
as a function of a. We will therefore have an equation of the form

F(V, a) = 0.

But I say that one can extract from this the value of a. For this it suffices to
look for the common solution of this equation and the given one: for one
cannot have, for example,

F(V,b) =10

unless (this equation having a common factor with the similar equation) one
of the functions ¢(a,...) is equal to one of the functions ¢(b,...); which is
contrary to the hypothesis.

It therefore follows that a can be expressed as a rational function of ¥,
and it is the same for the other roots.

This propositiont is stated without demonstration by Abel in his post-
humous memoir on elliptic functions.

* We have transcribed word-for-word the demonstration that we gave of this lemma In a
memoir presented in 1830. We attach as an historical document the following note which
M. Poisson felt he needed to make upon it.

*“*The demonstration of this lemma is insufficient; however, it is true according to n* 100 of
the memoir of Lagrange, Berlin, 1771.”

On jugera. (Author’s note,)

+ It is remarkable that one can conclude from this proposition that every equation depends on
an auxiliary equation with the property that all the roots of this new equation are rational
functions of one another, For the auxiliary equation for ¥V is of this type.

Moreover, this remark is a mere curiosity; in fact, an equation which has this property is not
in general any easier to solve than any other. (Author’s note.)
1 This appears to be a reference to §1 of Chapter 2 of Abel’s *“ Précis d’une théorie des fonctions
elliptiques” [A2, p. 547]. Elsewhere [G 1, p. 35] Galois says “It would be easy for me to prove that
I was unaware even of the name of Abel when I presented my first researches on the theory of
equations to the Institute, and that Abel’s solution could not have appeared before mine.”
(Translator’s note.)
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Lemma 1V. Suppose one has formed the equation for ¥, and that one has
taken one of its irreducible factors, so that ¥ is the root of an irreducible
equation. Let ¥, V', V", ... be the roots of this irreducible equation. If
a = f(V)is one of the roots of the given equation, f(V') will also be a root
of the given equation.

In fact, in multiplying together all the factors of the form V —
¢(a, b, c, ..., d)in which one applies to the letters all possible permutations,
one obtains a rational equation which is necessarily divisible by the
equation in question; therefore V' can be obtained by an exchange of letters
in the function V. Let F(¥, a) = 0 be the equation that one obtains in perm-
uting in V all the letters except the first; then one will have F(V', b) = (,
where b may be equal to a, but is certainly one of the roots of the given equa-
tion. Consequently, just as the given equation and F(¥, a) = 0 combine
to give a = f(V), the given equation and F(V', b) = 0 combine to give b =
!

With these principles set forth, we shall proceed to the exposition of our
theory.

PROPOSITION 1

Theorem. Let an equation be given whose m roots are a, b, ¢, ... . There
will always be a group of permutations of the letters g, b, ¢, ... which will
have the following property:

1. that each function invariant® under the substitutions of this group will be
known rationally;

2. conversely, that every function of the roots which can be determined
rationally will be invariant under these substitutions.

(In the case of algebraic equations, this group is none other than the set
of all 1-2-3...m permutations of the m letters, because in this case the
symmetric functions are the only ones that can be determined rationally.)

(In the case of the equation (x" — 1)/(x — 1) = 0, if one supposes that

* Here we call a4 function invariant not only if its form is unchanged by the substitutions of the
roots, but also if its numerical value does not vary when these substitutions are applied. For
example, if Fx = 0 is an equation, Fx is a function of the roots which is not changed by any
substitution,

When we say that a function is rationally known, we mean that its numerical value can be
expressed as a rational function of the cocfficicnts of the cquation and the quantitics that have
been adjoined. (Author’s note.)
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a=rb=1rc=1",...,gbeinga primitive root, the group of permutations
will be simply this one;:

abed . ..k,

bed . .. ka,

cd ... kab,

----------

kabc ...1 [sic;i precedes k].

In this particular case, the number of permutatjons is equal to the degree
of the equation, and the same will be true for equations all of whose roots
are ratjonal functions of one another.)

DEMONSTRATION, No matter what the given equation is, one can find a
rational function ¥ of the roots such that all the roots are rational functions
of V. With such a V, let us consider the irreducible equation of which V'is a
root (Lemmas III and IV). Let V, V*, V”, ..., V1 be the roots of this
equation.

Let oV, ¢, V. ¢, V...., ¢,V be the roots of the given equation.
Let us write the following n permutations of the roots:

V), 14 ¢ V. ¢V, P N 4
(V’)a ¢V’= qslV'a quV', AL ey
(V”), ¢ VH, qsl V”, (bz V”, e e,

A N1 4 A 0 7 4 SRV WP 2
I say that this group of permutations has the stated property.
In fact:

1. Every function F of the roots invariant under the substitutions of this
group can be written as F = ¥, and one will have

d’V = l//V' == g[/V” = e — lﬁV("_l),

The value of F can therefore be determined ratjionally.
2. Conversely, if a function F is determinable rationally, and if one sets
F =V, one will have

YV=yV =YV =... =y,

because the equation for ¥ has no commensurable divisor and ¥ satisfies
the rational equation F = y/¥, F being a rational quantity. Therefore
the function F will necessarily be invariant under the substitutions of the
group written above.

Thus, this group has the double properly given in the theorem. The
theorem is therefore demonstrated.
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We will call the group in question the group of the equation.

ScaoLiuM. Clearly in the group of permutations under discussion the dis-
position of the letters is of no importance, but only the substitutions of the
letters by which one passes from one permutation to the other.

Thus one can give a first permutation arbitrarily, provided the other
permutations are always deduced from it using the same substitutions
of the letters. The new group formed in this way will obviously have the
same properties as the first, because in the preceding theorem all that
matters is the substitutions which one can make in the functions.

ScHoruiuM. The substitutions are independent even of the number of roots.

PROPOSITION II

Theorem. If one adjoins to a given equation the root r of an auxiliary irredu-
cible equation®

(1) one of two things will happen: either the group of the equation will not
be changed; or it will be partitioned into p groups, each belonging to the
given equation respectively when one adjoins each of the roots of the
auxiliary equation;

(2) these groups will have the remarkable property that one will pass from
one to the other in applying the same substitution of letters to all the
permutations of the first.

(1)t If, after the adjunction of r, the equation for ¥ mentioned above
remains irreducible, it is clear that the group of the cquation will not be
changed. If, on the other hand, it can be reduced, then the equation for ¥
decomposes into p factors, all of the same degree and of the form

Sy x fVr)y x f(V ") x ...,

r, ¥, #", ... being the other values of r. Thus the group of the given equation
also decomposes into groups, each containing the same number of permuta-
tions, because each value of V corresponds to a permutation. These groups
are, respectively, those of the given equation when one adjoins successively
roE, .

* The original version included the words “of prime degree p” which Galois later struck
out, perhaps the night before the duel. Thus the letter p, which occurs in the statement of property
(1), is intended to be the degree of the auxiliary equation. For the correct statement of the prop-
osition, it should be modified to say that “the group will be partitioned into j ‘groups’ where j
divides p. If p is prime then the partition is into 1 **group™ or p. (Translator’s note.)

+ There is something that nceds completing in this demonstration. I haven’t the time. (Author’s
note.)
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(2) We saw above that the values of ¥V were all rational functions of onc
another. In view of this, let I be a root of f(V,r) = 0, and F(V) another. It
is then clear that if V' is a root of f(V, #') = 0, F(V’) will be another.*

With this stated, I say that one obtains the group relative to ' by applying
the same substitution of letters throughout to the group relative to r.
In fact, if one has, for example,

prF(V) = qbnl/a

one will also have (Lemma I),
¢ F(V") = ¢,V

Therefore, in order to pass from the permutation (F(V)) to the permutation
(F(V")) one must make the same substitution as one must in order to pass
from the permutation (V') to the permutation (V).

The theorem is therefore demonstrated.

(1832. PROPOSITION III

Theorem. If one adjoins to an equation all the roots of an auxiliary equation,
the groups in Theorem II will have the further property that each group
contains the same substitutions.

One will find the proof.1)

PROPOSITION IV

Theorem. If one adjoins to an equation the numerical value of a certain
function of its roots, the group of the equation will be reduced in such a way
as to contain no permutations other than those which leave this function
invariant.

In fact, by Proposition I, every known function must be invariant under
the permutations of the group of the equation.

* Because one will have f(F{(V), ©) = a function divisible by f(V, r). Therefore (Lemma I[)
f(F(V), r) = a function divisible by /(V, r’). (Author’s note.)

+ This is a revision made in 1832, The original version was:

PROPOSITION Iil

THEOREM, Ifthe equation for rhasthe form #¥ = A4, and if the pthroots of unity have already been
adjoined, the p groups of Theorem 1I will have the further property that the substitutions of
letters by which one passes from one permutation to another in each group are the same for all
the groups.

In fact, in this case it does not matter which value of r one adjoins to the equation. Con-
sequently, its properties must be the same after the adjunction of any value of r whatever. Thus
its group must be the same as far as the substitutions are concerned (Proposition 1, Scholium).
Therefore, ctc. {Translator’s note.)
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PROPOSITION V

ProBLEM. In which case is an equation solvable by simple radicals?

1 shall observe first that in order to solve an equation it is necessary to
reduce its group successively until it contains only one permutation. For,
when an equation is solved, any function whatever of its roots is known, even
when it is not invariant undcr any permutation.

With this set forth, let us try to find the condition which the group of an
equation should satisfy in order that it can be thus reduced by the adjunction
of radical quantities.

Let us follow the sequence of possible operations in this solution,
considering as distinct operations the extraction of each root of prime
degree.

Adjoin to the equation the first radical to be extracted in the solution.
One of two things can happen: either by the adjunction of this radical the
group of permutations of the cquation will be diminished, or, this extraction
of a root being only a preparation, the group will remain the same.

In any case, after a certain finite number of extractions of roots the group
must find itsclf diminished because otherwise the equation would not be
solvable.

If at this point it occurs that there are several ways to diminish the group
of the given equation by the simple extraction of a root, it is necessary, in
what we are going to say, to consider only a radical of the least possiblc
degree among all the simple radicals which are such that the knowledge of
each of them diminishes the group of the equation.

Therefore let p be the prime number which represcnts this minimum degree
such that the extraction of a root of degree p diminishes the group of the
equation.

We can always suppose, at least in rclation to the group of the equation,
that a pth root of unity « is included among the quantities that have already
been adjoined to the equation. For, since this expression can be obtained by
extractions of roots of degree less than p, its knowledge does not alter in any
way the group of the equation.

Consequently, according to Theorems I and III, the group of the equation
should decompose into p groups having in relation to one another this
double property:

(1) that onc passcs from one to the other by one single substitution;
(2) that they all contain the same substitutions.

I say that, conversely, if the group of the equation can be partitioned into
p groups which have this double property, one can, by a simple extraction of
a pth root, and by the adjunction of this pth root, reduce the group of the
equation to onc of these partial groups.
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Lct us take, in fact, a function of the roots which is invariant under all
substitutions of one of the partial groups, and docs not vary [sic] for any
other substitution.*

Let @ be this function of the roots.

Let us apply to the function # onc of the substitutions of the total group
which it docs not have in common with the partial groups. Let 0, be the
result. Apply the same substitution to #; and Ict (0, be the result, and so forth.

Since p is a prime number. this sequencc can end only with the term 6,_,,
after which onc will have 8, = 0, 0,4, = 0,, and so forth.

In view of this, it is clear that the function

0+ afy, + 0?0, + - + 0”710, )P

will be invariant under all the permutations of the total group, and conse-
quently will now be known.

If one extracts the pth root of this function and adjoins it to the equation,
then by Proposition IV the group will no longer contain any substitution
other than thosc of the partial groups.

Thus, in order for it to be possibic to reduce the group of an equation by
simple extraction of a root, the condition stated above is necessary and
sufficient.

Let us adjoin to the equation the radical in question; we can now reason
with respect to the new group as with respect to the preceding one, and it
must be possible to decompose it too in the manner indicated, and so forth,
untii a group is reached which contains only one permutation.

ScHoLiuM. It is easy to observe this process in the known solution of general
equations of the fourth degree. In fact, these equations are resolved by means
of an equation of the third degree, which itself requires the extraction of a
square root. In the natural sequence of ideas, it is therefore with this square
root that one must begin. But in adjoining this square root to the equation
of fourth degree, the group of the equation, which contains twenty-four
substitutions in all, is decomposed into two which contain only twelve. When
the roots are designated by a b ¢ d here is one of these groups:

abed acdb adbc
badc cabd dach
cdab dbac bcad
deba bdca cbda

* For this it suffices to choose a symmetric function of the various values assumed by a function
invariant under no substitutions when it is subjected to the permutations of onc of the partial
groups. (Author’s note.)
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Now this group itself splits into three groups, as is indicated in Theorems
IT and IYI. Thus, after the extraction of a single radical of third degree just
the group

abed
badc
cdab
dcba
remains, and this group again splits into two groups
abed cdab
badc dcba.

Thus, after a simple extraction of a square root,
abcd

badc

remains, which will be resolved, finally, by a simple extraction of a square
root.

One obtains in this way either the solution of Descartes or that of Euler.
For even though the latter extracts three square roots after the solution of
the auxiliary equation of third degree, it is well known that two suffice,
becausc the third can then be derived rationally.

We will now apply this condition to irreducible equations of prime degree.

APPLICATION TO IRREDUCIBLE EQUATIONS OF PRIME
DEGREE

PROPOSITION VI

LEmMMA. An irreducible equation of prime degree cannot become reducible
by the adjunction of a radical. [Sic. Galois evidently means that it cannot
become reducible without being solved completely.]

For, if r, ¥, ¥, . .. are the various values of the radical and if Fx = Qs the
given equation, Fx would have to split into factors

FOe,r) x f(xr) x...,

all of the same degree, which is impossible, at least unless f(x, r) is of the first
degree in r. [x]

Thus, an irreducible equation of prime degree cannot become reducible
unless its group is reduced to a single permutation.
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PROPOSITION VII

ProBLEM. What is the group of an irreducible equation of prime degree # if
it is solvable by radicals?

By the preceding proposition, the smallest group possible before the one
which contains only a single permutation will contain p permutations. But
a group of permutations of a prime number » of letters cannot contain just
n permutations unless each of these permutations can be derived from any
other by a cyclic substitution of order n (see the memoir of Mr. Cauchy,
Journal de 'Ecole, 17).

Thus the next-to-the-last group will be of the form

X0 X1 X2 X3 cee e e Xp~1
X Xo X3 X4 eee ... Xp—1 Xo
X X3 cer eee eee Xpoq Xo X, (G)
Xp—1 X0 Xy . ‘e Xp—2
X0, Xgs Xa, ..., X,_, being the roots.

Now the group which immediately precedes this one in the sequence of
the decompositions must be made up of a certain number of groups having
all the same substitutions as this one. But I observe that these substitutions
can be expressed as follows: (Let us set x, = Xq, X,+; = X;,.... 1t is clear
that each of the substitutions of the group (G) can be obtained by putting
X+ 10 place of x, throughout, ¢ being a constant.)

Let us consider any one of the groups similar to the group (G). According
to Theorem II, it can be obtained by applying one and the same substitution
throughout the group, say by putting x4, in place of x, throughout the
group (G), fbeing a certain function.

Since the substitutions of this new group must be the same as those of
the group G, one must have

fk +c)=[f{k) + C,
C being independent of k.
Therefore.

Sl + 2¢) = f(k) + 2C,

If c = 1 and k = 0, one finds
f(m) = am + b,

which is to say
Sk = ak + b,

a and b being constants.
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Therefore the group which precedes immediately the group G cannot
contain any substitutions other than those of the form

Xk Xak+b

and consequently can contain no cyclic substitutions other than those of the
group G.

One can apply the same argument to this group that was applied to the
preceding one, and it follows that the first group in the order of the decompo-
sitions, that is, the actual group of the equation cannot contain any substi-
tutions other than those of the form

Xk Xak+b
Therefore “if an irreducible cquation of prime degree is solvable by radicals
then the group of this equation can contain no substitutions other than
those of the form

Xk Xak+p
a and b being constants.”

Conversely, I say that when this condition holds the equation will be

solvable by radicals. In fact, consider the functions

(xo + oxy + 0%y, + -+ o x,m ) = Xy,
(xo + X, + o‘2x2a i o an_lx(n—ﬂa)n = Xas

(x() + AXy 2 + a2x2112 + o an-—jx("_”az)u = Xaz,

--------------------------------------------

o being an nth root of unity and g a primitive root of n.

It is clear that in this case any function that 1s unchanged by cyclic sub-
stitutions of the quantities X,, X,, X,2....will be immediately known.
Therefore one can find X;, X,, X,2.... by the method of Mr. Gauss for
binomial equations. Therefore, etc.

Thus, for an irreducible equation of prime degree to be solvable by radicals,
it 1s necessary and sufficient that every function invariant under the substitu-
tions

Xk Xak+b
be rationally known.
Thus the function
(X, - X X,— X)X —-X)...
must be known, no matter what X 1s.

It is therefore necessary and sufficient that the equation which gives this
function of the roots admit, no matter what X 1s, a rational value.

If the given equation has rational coefficients, the auxiliary equation will
also have rational coefficients as well, and 1t will suffice to determine whether
this auxiliary equation of degree 1-2-3...(n — 2) does or does not have a
rational root. And one knows how to do this.

This is the method that one must use in practice. But we are going to
present the theorem in a different form.
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PROPOSITION VIII

Theorem. 1n order for an irreducible equation of prime degree to be solvable
by radicals, it is necessary and sufficient that once any two of the roots are
known the others can be deduced from them rationally.

In the first place, it is necessary because, the substitution

Xr  Xak+b

never leaving two letters in the same place, it is clear that when two roots of
the equation are adjoined, by Proposition 1V, the group is reduced to a single
substitution,

In the second place, it is sufficient: because in this case, no substitution of
the group can leave two letters in the same place. Consequently the group
will contain at the very most n(n — 1) permutations. Therefore it will contain
only a single cyclic substitution (otherwise it would have at least p? [sic;
should be n*] permutations). Therefore each substitution of the group x,,
X ;. must satisfy the condition

flk +0) = fk + C.

Therefore, etc.
The theorem is therefore demonstrated.

Example of Theorem VII
Let n = 5. The group will be the following one:

abcde
bedea
cdeab
deabc
eabed

acebd
cebda
ebdac
bdace
daceb

aedch
edcha
dcbae
chaed
baedc

adbec
dbeca
becad
ecadb
cadbe



